Optical Handling and Positioning

Module 1-2
of
Course 1, Fundamentals of Light and Lasers
Figure 2-1 Refractive index of several optical materials as a function of wavelength
Figure 2-2 Absorption of light passing through a transparent medium of thickness x
Figure 2-3 Transmission characteristics of several optical materials: (a) fused silica, (b) fused quartz, (c) Pyrex, and (d) Zerodur
(Source: www.escoproducts.com)
Reflection and transmission of light incident perpendicular to an air-glass interface.

Figure 2-4 Reflection and transmission of light incident perpendicular to an air-glass interface
Figure 2-5 Reflection and refraction of initially unpolarized light containing equal amounts of E_{TE} and E_{TM}
Figure 2-6 Absence of reflected light at a Brewster angle of incidence when incident light is totally polarized as E_{TM}
Figure 2-7 *Schematic diagram of a typical vacuum deposition chamber*
Figure 2-8 Reflection at multiple interfaces with different refractive indices
Figure 2-9 Reflection at top and bottom interfaces of coating material. Reflected rays 1 and 2 are 180° out of phase, leading to destructive interference and little or no reflected light.
Figure 2-10 *Increase of reflectivity at a specific wavelength \(\lambda \) after reflection at multiple layers of coating*
Figure 2-11 Reflectance of some metals as a function of wavelength
Figure 2-12 Properties of a band pass filter
Figure 2-13 Properties of a high pass cut-off filter
Figure 2-14 Optical densities of some neutral-density filters
Figure 2-15 Percentage of transmission of a specific narrow-band filter
Figure 2-16 Transmission characteristics of a radiometric filter showing a nearly uniform transmission between 400 nm and 1000 nm (Image as revised in Fundamentals of Light and Lasers, 3rd Edition)
Figure 2-17 Transmission characteristics of a photometric filter
Figure 2-18 Transmission characteristics of a safety goggle suitable for protection from CO₂ laser beams
Figure 2-19 *Cross-sectional view of a triangular optical rail with carriage, adjustable rod, lens support and lens*
Figure 2-20 *Double rectangular optical rail*
(Courtesy: Newport Corporation)
Figure 2-21 Flat-bed bench for optical mounting
Figure 2-22 *Isolation table with pneumatic legs*
Figure 2-23 *Different types of lens/mirror mounts*
Figure 2-24 Other types of holders for optical elements
Figure 2-25 *Schematic diagram of a scissors jack and a “sine table”*
Figure 2-26 Schematic diagrams of one-dimensional and two-dimensional translators
Figure 2-27 Picture of a simple rotational stage and a rotational stage of designed to hold Polaroid sheets
Figure 2-28 *Combined rotational and translational stage*
Figure 2-29 *One and two-dimensional tilting stages*
Figure 2-30 A commercial goniometer
(Courtesy: Newport Corporation)
Figure 2-31 *Schematic diagram for observing surface imperfections on an optical element*
Figure 2-32 Schematic diagram of an optical setup used to observe internal defects in an optical element
Figure 2-33 Experimental setup designed to observe interference fringes on a flat optical element
Figure 2-34 Typical interference patterns observed on flat optical test plates of different flatness